机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖机器学习和深度学习的基础知识,主要包括机器学习基础、统计分析、分类、聚类、文本分析、神经网络、贝叶斯网络、支持向量机、分布式机器学习等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、目标检测、自编码器、生成对抗网络、注意力机制等深度学习的内容。此外,本书还介绍机器学习的热门应用领域推荐系统以及强化学习等主题。
本书内容全面、案例丰富、深入浅出,部分章节提供Python程序代码和习题,供读者巩固所学知识。另外,本书还为读者提供配套的微课视频。
本书不仅适合作为高等院校本科生及研究生的机器学习、深度学习和数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
我要评论