本书主要介绍主流的人工智能理论、算法以及Python实现方法,目的是使学生学会人工智能理论及推导过程,并且掌握调用Python人工智能库和自定义编码的方法。全书共分10章,分别为人工智能与Python概述、Python基础、线性回归及其Python实现、逻辑斯蒂分类及其Python实现、最大熵模型及其Python实现、K-近邻分类与K-均值聚类及其Python实现、朴素贝叶斯分类及其Python实现、决策树及其Python实现、神经网络及其Python实现、图像识别领域的应用案例。
本书可作为计算机专业相关课程的教材,也可作为程序设计人员的参考书。
我要评论