数据预处理是数据分析、数据挖掘或人工智能中必不可少的环节,它通过一定的方法将存在诸多问题的低质量数据处理变成高质量数据,在一定程度上提高数据分析或数据挖掘等工作的效率。
本书以Jupyter Notebook为主要开发工具,采用理论与实例相结合的形式,全面地介绍数据预处理的相关知识。全书共8章,其中第1章介绍数据预处理的入门知识;第2~6章介绍科学计算库NumPy和数据分析库pandas,以及通过pandas库实现数据获取、数据清理、数据集成、数据变换和数据规约的功能;第7章介绍数据清理工具OpenRefine的安装及使用;第8章结合前期的核心知识进行实战演练。除第1章外,其他章均配置了丰富的示例或案例,读者可以一边学习一边练习,巩固所学的知识,并在实践中提升实际开发能力。
本书附有配套视频、源代码、习题、教学课件等资源。为帮助初学者更好地学习本书中的内容,本书还提供了在线答疑。
本书既可作为高等院校计算机相关专业的专用教材,也可以作为相关技术爱好者的入门用书。
读者服务如下