本书基于当前流行的深度学习框架之一——Keras,从新手的角度出发,详细讲解Keras的原理,力求帮助读者实现Keras从入门到精通。全书共9章,主要内容包括初识深度学习、深度学习的数据预处理技术、使用Keras开发深度学习模型、卷积神经网络及图像分类、循环神经网络在文本序列中的应用、自编码器、生成式对抗网络、模型评估及模型优化,以及深度学习实验项目。本书内容由浅入深、语言通俗易懂,从基本原理到案例应用、从基础算法到对复杂模型的剖析,让读者在循序渐进的学习中理解Keras。
本书可作为高等院校计算机、通信、大数据等专业相关课程的教材,也可作为人工智能、图像处理、计算机等方向的科研人员和深度学习技术爱好者的参考书。
我要评论