数据科学的数学基础

一本提供数据科学的基础数学知识及其应用的图书
分享 推荐 1 收藏 86 阅读 3.7K
卢力 (作者) 978-7-115-55288-4

关于本书的内容有任何问题,请联系 孙澍

1.本书旨在为大数据与人工智能等提供一些基本的数学知识,不会也不可能涵盖所有的数学知识
2.各章对某些重要算法应用提供案例及其Python演示代码
3.本书重点在于理解,理解每一个知识点是什么,目的是什么,用于做什么。如何用计算机去计算,如何用Python工具包去计算.

内容摘要

数据科学是从单纯的“大”数据提炼出“智慧”的数据,以供人们发现新知识并辅助决策的综合交叉学科.本书简要阐述数据科学的数学基础.全书共11章,内容包括线性代数基础、线性空间与线性变换、向量与矩阵范数、矩阵分解、概率统计基础、随机过程、最优化基础、线性规划、常用无约束最优化方法、常用约束最优化方法以及综合案例.除第11章外,每章都有应用实例与该章内容紧密结合,以进一步加强读者对知识点的理解和掌握.所有的应用实例和第11章综合案例的代码都在Windows操作系统下利用Python 3.7编写,并在交互式解释器IDLE上调试通过.
本书可作为高等院校大数据、人工智能等相关专业的教材,也可供从事大数据、人工智能及相关领域教学、研究和应用开发的人员参考.

目录

全部展开

读者评论

赶紧抢沙发哦!

我要评论

作者介绍

卢力,博士,华中科技大学软件学院副教授。目前主要从事数字图像处理与模式识别和数据科学等方向的研究工作。主持和参与多项科研项目和教学研究项目的研究;在国内外重要学术期刊和会议上发表论文二十余篇;正式出版教材2部。主要承担研究生“软件数学”“数字图像处理及应用”,本科生“离散数学”“数学建模”等课程的教学任务。指导本科生参加美国大学生数学建模竞赛,多次获得一、二、三等奖。

推荐用户

相关图书

人邮微信
本地服务
人邮微信
教师服务
二维码
读者服务
读者服务